Title: Hotel Room Pricing and Yield Management

Speaker: Christina Chi

Hotel Room Pricing \& Yield Management

A Example of

* ${ }^{\circ}=$

Rack rate: full price without discount that a hotel quotes as a room charge

Sample Hotel Rack Rates

Room Type	Rack Rate
Standard Double	$\$ 109.00$
Standard King	$\$ 119.00$
Executive Double	$\$ 149.00$
Executive King	$\$ 164.00$
Executive Double (Concierge Level)	$\$ 199.00$
Executive King (Concierge Level)	$\$ 214.00$
Double Parlor Suite	$\$ 269.00$
King Parlor Suite	$\$ 289.00$

Determining the Proper Room Rate

- Room rates reflect not only costs / investments \& rates of return, but also markets (supply \& demand) \& competition, and quality of management
- Must be large enough to cover costs and a fair return on investment (internal cost considerations)
- Must be reasonable enough to attract and retain guests (external market condition)
- Traditional room rate calculation focus on the needs of the enterprises not on the needs of the guests.
- Modern pricing strategies consider the customer's ability and willingness to pay.

Traditional Pricing Strategies Rule-of-thumb Method

- Building Cost Room Rate Formula
- The average room rate should equal \$1 per \$1,000 of construction cost
- A 200 room hotel, costing $\$ 14$ million, should have a room rate of
- $\quad \$ 14$ million $/ 200$ rooms $/ \$ 1,000=\$ 70$
- Hotel-industry analysts say the Trump Organization's planned 261room luxury hotel in the Old Post Office Pavilion in Washington would likely require premium room rates to cover its $\$ 200$ million development cost.
(The Washington Post)
- Shortcomings
- Only consider historical construction costs and ignore current costs
- A 70% occupancy assumption is required

Traditional Pricing Strategies Hubbart Room Rate Formula

- Bottom up approach
- In contrast to the top down approach used by income statement
- Start with net income required,
- calculate costs and expenses,
- and then determine sales revenue required and prices to be charged

Step 1	Calculate the hotel's desired net income or return on investment
Step 2	Calculate all operating costs
Step 3	Calculate all fixed expenses
Step 4	Calculate non room profit / loss
Step 5	Determine room revenue needed to cover costs \& NI / ROI
Step 6	Forecast rooms to be sold based on estimated occupancy
Step 7	Calculate the hotel's required ADR

Hubbart Room Rate Formula - Example

- Net income desired
- Operating costs
- Taxes, Insurance \& leases
- Depreciation
- Total (NI + costs)
- Less income from sources other than rooms
- Room revenue needed to meet goals

414,000
1,102,800
273,000
294,750
2,084,550
$(139,200)$
\$1,945,350

1. Annual room revenue needed
2. Number of rooms available (Per Day)
3. Annual rooms available (Item 2×365)
4. Number of rooms to be sold (item $3 @ 70 \%$) 22,484
5. ADR required to meet goals (item 1 / item 4)

Shortcomings of Hubbart Formula

- Shortcomings of the formula
- It is inward looking at what the hoteliers need, rather than outward looking at market conditions (what the customers need)
- Many assumptions are problematic
- What about net income and operating cost projections?
- What occupancy rate is attainable?
- Occupancy is a function of room rate!!
- What about the role of other departments like F \& B?
- Should low estimates for other departments force us to increase rates?
- Should high estimates for other departments force us to lower rates?
- It calculates the average room rate, not the rate for any specific room
- Summary
- It is a worthwhile formula to use as a guideline for zero-based room rates, after recognizing the problems inherent in it.

Square Foot Calculation

- Room rates based on room size

- Use numbers from Hubbart Formula, but use square footage of room, not number of rooms

1. Hubbart formula calculated that annual required revenue is $\$ 1,945,350$ and the hotel has 27,250 square feet in 88 rooms
2. @ $\mathbf{7 0} \%$ occupancy only $\mathbf{1 9 , 0 7 5}$ sq. ft. will be occupied (per day)

$$
27,250 \times 70 \%=19,075
$$

3. Annual occupied square footage is $\mathbf{6 , 9 6 2}, \mathbf{3 7 5}$ sq. ft . (Item 2×365)

$$
19,075 \times 365=6,962,375
$$

4. Daily required revenue per square footage occupied is $\mathbf{\$ 0 . 2 7 9}$ (annual revenue / Item 3)

$$
\$ 1,945,350 / 6,962,375=\$ 0.279
$$

5. A 300 sq. ft. room would sell for $\mathbf{\$ 8 3 . 8 2}$ (item 4×300)

$$
0.279 \times 300=\$ 83.82
$$

A 450 sq. ft. room would sell for $\mathbf{\$ 1 2 5 . 7 3}$ (item 4×200)

$$
0.279 \times 450=\$ 125.73
$$

In-class Assignment

$\checkmark \quad$ The Hubbart Room Rate Formula

- Operating Expenses
- Taxes and Insurance
- Depreciation
- Reasonable ROA
- Income from other sources
- Amount needed from room sales

1. Number of rooms available (Per Day)
2. Occupancy $\%$
3. Calculate ADR

2,000,800
400,000
350,750
900,000
340,000
\$ \qquad
75
75%
\$ \qquad
\checkmark The Square Foot Calculation - use data from the above

- Hotel has 21,955 square feet in 75 rooms
- @ 75\% occupancy only
- Daily required revenue per occupied square footage is \qquad
- A 300 sq. ft. room would sell for \$ \qquad

Modern Pricing Strategies

Modern pricing systems reflect market condition including competition, supply and demand, etc.

Competitive

Pricing

- Charge what the competition charges.

Follow-the-
Leader Pricing
__ Charge what the dominant hotel in the area charges.

Prestige Pricing _ Charge premium price, and justify it with better product and/or service levels.

Discount
Pricing
Reduce rates below those of competitors without considering operating costs.

Room Rate Types

$>$ Special event rate
$>$ super or premium rack rate
$>$ Seasonal rate
$>$ Negotiated rates
$>$ Corporate rates; Government rates; Group rates (SMERF, AAA, AARP, tour group, etc.) ; contract rooms
$>$ Fade rate (flex rate)
$>$ Reduced rate when guests exhibit price resistance
$>$ Package rate
$>$ American plan (AP) or modified American plan (MAP) rate; Allinclusive plan rate
$>$ Day or part-day or use rates
$>$ makes possible over $\mathbf{1 0 0 \%}$ occupancy

Modern Pricing Strategies Yield Management

Law of supply and demand:

*O" Law of demand: when supply is held constant, increase in demand results in increase in price
*O" Law of supply: when demand is held constant, increase in supply leads to decrease in price

Hotel short-term supply and demand:

二O" demand will increase and decrease depending on the time frame examined.
*O" Perishability of hotel rooms.

Yield Management

History

* ${ }^{\circ}$ - Airline industry was one of the first to actively manage pricing based on changes in demand
$* O$ Other industries with a perishable product followed suit, including hotels, rental car companies, cruise ships, time shares, live theatres

Implementation

$=0$ ' $=$ Room rates vary by day of week, time of month, season, or in response to local special events

Techniques

$={ }^{\circ}$ " $=$ Based on forecast demand, eliminate discounts in high demand periods, increase discounts in low demand periods, implement "special event" rates, and use MLOS and CTO to maximize occupancy

Yield / Revenue Management

* The act of controlling rates and restricting occupancies to maximize room revenue
\& Techniques \& procedures used to manipulate occupancy, ADR, or both to maximize room revenue

$$
\text { Room Revenue }=\text { Rooms occupied } \times \text { ADR }
$$

To maximize room revenue

Occupancy

Average Daily Rate

Other Definitions

\#1: The first definition for revenue management is a more technical one and is very broad in scope:
"Revenue management is the art and science of predicting real-time customer demand at-the-micro market level and optimizing the price and availability of products to match that demand."
\#2: The next definition emphasizes the coming together of four important components. This is the second definition as it cannot be accomplished until the first one is understood:
"To sell the right product to the right customer at the right time for the right price... and via the right channel."
\#3: In this definition, the focus is on combining elements of the product, the customer and the price so that they come together to generate the most revenue for a company. Or, more simply put, "Offering room rates and inventory controls that are most appropriate for the anticipated demand."

Practicing Yield Management Managing Rate

Knowing demand for rooms is key !

$\therefore \ddot{O}=$ When demand for rooms is high, drive ADR by selling at 'rack rate' or 'special event rate' : e.g. college football game night
$*{ }^{\circ}=$ When demand for rooms is low, drive occupancy by offering discounts: e.g. night before Thanksgiving
\checkmark lowering room rates may or may not achieve the desired outcome

Yield Management strategy based on room demand

Forecasted room demand	Rate strategy
$90-100 \%$ occupancy	Offer no discounts
$70-90 \%$ occupancy	Offer discounts up to 10%
$50-70 \%$ occupancy	Offer discounts up to 20%
Less than 50\% occupancy	Offer discounts up to 30\%

UNDERSTANDING THE MARKET

Historical Performance

Most revenue executives find that tracking the following information is beneficial to their decision making over time:	
Room nights	Cancellation lead time
Revenue	RevPAR
Lead time/Booking pace	Cancellations
No shows (both guaranted and non-guaranted)	Transient rooms
Group rooms	Arrivals
Departures	Walk-ins
Extended stays	Early departures
Denials/Regrets *	Source of bookings
ADR (Average Daily Rate)	

Practicing Yield Management Managing Inventory - stay control

Example: Forecasted room demand (Hotel with 300 rooms)

	Friday	Saturday	Sunday
Rooms left to sell	120	25	250

\rightarrow Identifying Saturday as the day for MLOS of two days or CTA to maximize total weekend occupancy
"O" MLOS: "Minimum Length of Stay" Hotel requires guests to stay a designated minimum number of nights
"O" CTA: "Closed to Arrival" Hotel declines reservation for guests attempting to arrive on this specific date

Menaeging liventory Overbooking

- A hotel knowingly sells more reservations than it has rooms available
- The perfect fill is an elusive situation
- Guest no-shows (8\% industry-wide)
- Cancellations
- Under-stays
- Common overbooking policies
- Arranging substitute accommodations
- Consequences of 'walking' a guest
- Financial costs
- Public relations

Displacement Analysis

$>$ Many hotels now do a displacement analysis for group opportunities, taking into consideration the entire group value and comparing that to the value of transient business that would be displaced by the group. The group value includes all food and beverage spending, meeting room rental and any additional outlet spending that is anticipated, minus any costs that are involved.

Distribution Strategy

- Creating an appropriate distribution strategy has also become a very important part of revenue management. More and more, the industry is becoming aware of the importance of analyzing its costs and profitability by channel.
- $20122^{\text {nd }}$ Quarter Global Hotel Industry Data - distribution channel performance (top 50 markets)

Property direct (36.7\%)	Global Distribution System (GDS) 9.1\%
Chain / brand website (21.3\%)	OTA (merchant model vs.
Central Reservation office bookings (16.1\%)	opaque model) 16.8%

INTERDEPARTMENTAL INTEGRATION \& ORGANIZATION

Integrating Revenue Management into the Organization

- Assumes 200 rooms and a 30 -day month, what are the monthly gross yield for these three hotels with different ADR and occupancy?

Hotel	ADR (\$)	Occupancy \%	Monthly Gross Yield (revenue)
A	75	60%	
B	100	45%	
C	50	90%	

