Lecture 8: Patterns, Profiles, and Motifs

- Finding patterns in protein and DNA sequences
- Calculating profiles of DNA sequences
Definitions and Resources

§ **Motif**: A region of a protein or DNA sequence that may be functionally or structurally significant and/or conserved in other sequences
 • Motifs usually contain biologically important sequences

§ **Pattern**: Describes a motif using a qualitative consensus sequence (e.g., IUPAC or regular expression)

§ **Profile**: Describes a motif using quantitative information captured in a position specific scoring matrix (weight matrix)

§ PROSITE is a protein sequence pattern and profile database
 • http://www.expasy.ch/prosite
 • Contains >1100 entries describing >1600 patterns and profiles

§ DNA pattern and profile databases are more fragmented
 • JASPAR (http://jaspar.genereg.net/) and S. cerevisiae Promoter Database (SCPD) (http://rulai.cshl.edu/SCPD/)
Importance of Sequence Patterns in Proteins

• Conserved patterns in protein sequences usually have important biological functions

• Conserved sequence patterns may be indicative of e.g., a protein structural domain, enzyme active site, or a binding site for another protein or metal ion
Steps in the Development of a New PROSITE Pattern

(1) Construct a multiple sequence alignment of a protein family

(2) Use the alignment to identify conserved or biologically significant residues (e.g., residues in catalytic/active site, binding domain, structural features)

(3) Start by creating a core sequence pattern (approximately 4-5 contiguous amino acids in length)

(4) Expand the pattern to improve its sensitivity and specificity for detecting known protein family members

 • Sensitivity: Test the trial pattern against known positive sequences
 • Specificity: Test the trial pattern against known negative sequences

Finding Patterns in Multiple Sequence Alignments

Pattern of Cu/Zn Superoxide Dismutase

Example of a PROSITE pattern (PS00087; SOD_CU_ZN_1): [GA]-[IMFAT]-H-[LIVF]-H-{S}-x-[GP]-[SDG]-x-[STAGDE]

The two histidines (H) are copper ligands

Pattern Nomenclature for PROSITE database:
• Each position in pattern is separated with a hyphen
• x can match any residue
• [] are used indicate ambiguous positions in the pattern
e.g., [SDG] means the pattern can match S, D, or G at this position
• { } are used to indicate residues that are not allowed at this position
e.g., {S} means NOT S (not Serine)
• () surround repeated residues, e.g., A(3) means AAA
• < or > indicate the pattern is restricted to the N- or C-terminus of the sequence

Many DNA patterns are binding sites for Transcription Factors

Gal4 binding sequence:
C-G-G-N(11)-C-C-G

TATA Box:
T-A-T-A-A-[AT](3)

Gene

Gal4

TATA box

GAL3 CGGTCCACTGTGTGCGG
GAL7 CGGAGCAGCTTGGAGGC
GAL80 CGGCCGACTCTCGCGCCG
GCY1 CGGGGGCAGACTATTCCG
GAL1 CGGATTAGAAGGCGCGG
 CGGGCGACAGCCCTCGG
 CGGAAAGACTCTCCTCCG
GAL10 CGGAGGAGGCTTGCTCGCGG
 CGGGCGCTTTCTAATCGG
GAL2 CGGAAGCTTCTCCTCCG
 CGGCGTGTCCTCGCGG
 CGGAGATATCTGCGCGG
 CGGGCGGATCAGTCCCG
 CGGATCAGTCCCGAAGG
PCL10 CGGAGTATATTGCAACCG
MTH1 CGGGGAATGGAGTCCG
IUPAC DNA Codes for DNA Patterns

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
<th>Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>A</td>
<td>Adenine</td>
</tr>
<tr>
<td>B</td>
<td>C or G or T</td>
<td>Not-A (B follows A in alphabet)</td>
</tr>
<tr>
<td>C</td>
<td>C</td>
<td>Cytosine</td>
</tr>
<tr>
<td>D</td>
<td>A or G or T</td>
<td>Not-C (D follows C in alphabet)</td>
</tr>
<tr>
<td>G</td>
<td>G</td>
<td>Guanine</td>
</tr>
<tr>
<td>H</td>
<td>A or C or T</td>
<td>Not-G (H follows G in alphabet)</td>
</tr>
<tr>
<td>K</td>
<td>G or T</td>
<td>Keto</td>
</tr>
<tr>
<td>M</td>
<td>A or C</td>
<td>aMino</td>
</tr>
<tr>
<td>N</td>
<td>A or C or G or T</td>
<td>aNy</td>
</tr>
<tr>
<td>R</td>
<td>A or G</td>
<td>puRine</td>
</tr>
<tr>
<td>S</td>
<td>C or G</td>
<td>Strong interaction (3 H-bonds)</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>Thymine</td>
</tr>
<tr>
<td>V</td>
<td>A or C or G</td>
<td>Not-T (or Not-U)</td>
</tr>
<tr>
<td>W</td>
<td>A or T</td>
<td>Weak interaction (2 H-bonds)</td>
</tr>
<tr>
<td>Y</td>
<td>T or C</td>
<td>pYrimidine</td>
</tr>
</tbody>
</table>
Pattern of TF binding site consensus sequences

- Alignment of transcription factor binding sites

 Motif

 CCAAAATTAGGAAA
 CCTATTAAGAAAA
 CCAAATTAGGAAAA
 CCAAATTCGGATA
 CCCATTTCGAAAA
 CCTATTTAGTATA
 CCAAATTAGGAAAA
 TCTATTTTGGAAA
 CCAATTTTCAAAA
 CCAAATTGGCAAA

Consensus: YCHAWTWNNSAWA or CCHAWTTNGNAWA
Patterns: Summary

§ Advantages:
- Relatively straightforward to identify => exact pattern matching is fast
- Patterns are relatively intuitive to read and understand
- Databases with large numbers of protein and DNA sequence patterns are available (e.g., PROSITE, etc)

§ Disadvantages:
- Patterns are a qualitative description of motif => lose information about relative frequency of each residue or nucleotide at an ambiguous position, e.g. [GAC] versus 0.6 G, 0.28 A, and 0.12 C
- Can be difficult to write complex motifs using regular expression notation
- Cannot represent subtle sequence motifs
DNA Sequence Profiles

§ A profile is a position-specific scoring matrix that gives a quantitative description of a sequence motif

§ For DNA sequences, the profile scoring matrix has N columns and $4+$ rows, N being the length of the profile (# of sequence positions)

§ The first 4 rows of each column specify the score (log odds ratio) for finding, at that position in the target sequence, each of the 4 nucleotides (A, C, G, T)

§ The rows after the first 4 rows contain penalties for insertions/deletions at that position in the target sequence

§ $M_{kj} =$ score for the j^{th} nucleotide (or gap) at the k^{th} position in the sequence
DNA Profile: Position Specific Scoring Matrix

Sequence profile position k

\[M_{kj} = \log \left(\frac{p_{kj}}{p_j} \right) \]

- $p_{kj} =$ probability of nucleotide j at position k in the profile
- $p_j =$ “background” probability of nucleotide j in genome sequence
Simple Method for Calculating DNA Sequence Profiles

Adapted from Hertz and Stormo, *Bioinformatics* 15:563-577

§ Recall: \(M_{kj} = \log_e \left(\frac{p_{kj}}{p_j} \right) \)

§ As the number of aligned sequences grow (for large \(Z \)): \(p_{kj} = \frac{C_{kj}}{Z} \)
 - \(C_{kj} \) = Number of \(j^{th} \) type nucleotide at position \(k \)
 - \(Z \) = Total number of aligned sequences

§ For small numbers of aligned sequences, better to use the following method of calculating \(p_{kj} \):

\[
p_{kj} = \frac{C_{kj} + p_j}{Z + 1}
\]

- Where \(p_j \) = background probability of that nucleotide type in the genome (based on GC content of genome)
Example of calculating a DNA sequence profile (PSSM)

Alignment of Transcription factor consensus binding sequence:

```
CCAAATTAGGAAA
CCTATTAAGAAAA
CCAAATTAGGAAA
CCAAATTCCGATA
CCCATTTCGAAAA
CCTATTAGTATA
CCAAATTAGGAAA
CCAAATTGGCAAA
TCTATTTTGGAAA
CCAATTTTCAAAA
```

Alignment Matrix:

<table>
<thead>
<tr>
<th>Position k</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>A:</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>10</td>
<td>5</td>
<td>0</td>
<td>1</td>
<td>5</td>
<td>0</td>
<td>3</td>
<td>10</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>C:</td>
<td>9</td>
<td>10</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>G:</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>9</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>T:</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>5</td>
<td>10</td>
<td>9</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

Computing the DNA Sequence Profile (PSSM)

Alignment Matrix:

<table>
<thead>
<tr>
<th>Position k =</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>A:</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>10</td>
<td>5</td>
<td>0</td>
<td>1</td>
<td>5</td>
<td>0</td>
<td>3</td>
<td>10</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>C:</td>
<td>9</td>
<td>10</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>G:</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>9</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>T:</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>5</td>
<td>10</td>
<td>9</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

Recall: \(M_{kj} = \log_e \left(\frac{p_{kj}}{p_j} \right) = \log_e \left(\frac{(C_{kj} + p_j) / (Z + 1)}{p_j} \right) \)

Profile matrix values for k = 1 (assume \(p_j = 0.25 \) for all nucleotides):

\[
M_{1A} = \log_e \left(\frac{(C_{1A} + p_A) / (Z + 1)}{p_A} \right) = \log_e \left(\frac{(0 + 0.25) / (10 + 1)}{0.25} \right) = -2.4
\]

\[
M_{1C} = \log_e \left(\frac{(C_{1C} + p_C) / (Z + 1)}{p_C} \right) = \log_e \left(\frac{(9 + 0.25) / (10 + 1)}{0.25} \right) = 1.2
\]

\[
M_{1G} = \log_e \left(\frac{(C_{1G} + p_G) / (Z + 1)}{p_G} \right) = \log_e \left(\frac{(0 + 0.25) / (10 + 1)}{0.25} \right) = -2.4
\]

\[
M_{1T} = \log_e \left(\frac{(C_{1T} + p_T) / (Z + 1)}{p_T} \right) = \log_e \left(\frac{(1 + 0.25) / (10 + 1)}{0.25} \right) = -0.8
\]
Computing the DNA Sequence Profile (PSSM)

Alignment Matrix:

<table>
<thead>
<tr>
<th>Position k =</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>A:</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>10</td>
<td>5</td>
<td>0</td>
<td>1</td>
<td>5</td>
<td>0</td>
<td>3</td>
<td>10</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>C:</td>
<td>9</td>
<td>10</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>G:</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>9</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>T:</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>5</td>
<td>10</td>
<td>9</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

DNA Profile Matrix (PSSM):

\[
M_{kj} = \log_e \left(\frac{p_{kj}}{p_j} \right) = \log_e \left(\frac{(C_{kj} + p_j) / (Z + 1)}{p_j} \right)
\]
Scoring a Test Sequence using the DNA profile (PSSM)

Test Sequence (potential binding site):

```
CCTATTTAGGATA
```

DNA sequence profile (PSSM) for Transcription Factor binding site:

<table>
<thead>
<tr>
<th>Position k</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>A:</td>
<td>-2.4</td>
<td>-2.4</td>
<td>0.8</td>
<td>1.3</td>
<td>0.6</td>
<td>-2.4</td>
<td>-0.8</td>
<td>0.6</td>
<td>-2.4</td>
<td>0.2</td>
<td>1.3</td>
<td>1.1</td>
<td>1.3</td>
</tr>
<tr>
<td>C:</td>
<td>1.2</td>
<td>1.3</td>
<td>-0.8</td>
<td>-2.4</td>
<td>-2.4</td>
<td>-2.4</td>
<td>-2.4</td>
<td>-0.2</td>
<td>-0.8</td>
<td>-0.8</td>
<td>-2.4</td>
<td>-2.4</td>
<td>-2.4</td>
</tr>
<tr>
<td>G:</td>
<td>-2.4</td>
<td>-2.4</td>
<td>-2.4</td>
<td>-2.4</td>
<td>-2.4</td>
<td>-2.4</td>
<td>-2.4</td>
<td>-0.8</td>
<td>1.2</td>
<td>0.6</td>
<td>-2.4</td>
<td>-2.4</td>
<td>-2.4</td>
</tr>
<tr>
<td>T:</td>
<td>-0.8</td>
<td>-2.4</td>
<td>0.2</td>
<td>-2.4</td>
<td>0.6</td>
<td>1.3</td>
<td>1.2</td>
<td>-0.2</td>
<td>-2.4</td>
<td>-0.8</td>
<td>-2.4</td>
<td>-0.2</td>
<td>-2.4</td>
</tr>
</tbody>
</table>

Test seq:

```
C    C    T    A    T    T    T    T    A    G    G    A    T    A
```

Total Score for test sequence:

Score = 1.2 + 1.3 + 0.2 + 1.3 + 0.6 + 1.3 + 1.2 + 0.6 + 1.2 + 0.6 + 1.3 + -0.2 + 1.3

Score = 11.9

• Does the Test Sequence match the DNA sequence profile?
Simple Test for a Match to the DNA sequence profile

Score of Test Sequence (**CCTATTTAGGATA**) : **11.9**

Maximum possible score (**CCAATTTAGGAAA**):

<table>
<thead>
<tr>
<th>Position k =</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>-2.4</td>
<td>-2.4</td>
<td>0.8</td>
<td>1.3</td>
<td>0.6</td>
<td>-2.4</td>
<td>-0.8</td>
<td>0.6</td>
<td>-2.4</td>
<td>0.2</td>
<td>1.3</td>
<td>1.1</td>
<td>1.3</td>
</tr>
<tr>
<td>C</td>
<td>1.2</td>
<td>1.3</td>
<td>-0.8</td>
<td>-2.4</td>
<td>-2.4</td>
<td>-2.4</td>
<td>-2.4</td>
<td>-0.2</td>
<td>-0.8</td>
<td>-0.8</td>
<td>-2.4</td>
<td>-2.4</td>
<td>-2.4</td>
</tr>
<tr>
<td>G</td>
<td>-2.4</td>
<td>-2.4</td>
<td>-2.4</td>
<td>-2.4</td>
<td>-2.4</td>
<td>-2.4</td>
<td>-2.4</td>
<td>-0.8</td>
<td>1.2</td>
<td>0.6</td>
<td>-2.4</td>
<td>-2.4</td>
<td>-2.4</td>
</tr>
<tr>
<td>T</td>
<td>-0.8</td>
<td>-2.4</td>
<td>0.2</td>
<td>-2.4</td>
<td>0.6</td>
<td>1.3</td>
<td>1.2</td>
<td>-0.2</td>
<td>-2.4</td>
<td>-0.8</td>
<td>-2.4</td>
<td>-0.2</td>
<td>-2.4</td>
</tr>
</tbody>
</table>

Max Score: **C C A A T T T T A G G A A A A**

Total Score for Best Matching Sequence:

Max Score = 1.2 + 1.3 + 0.8 + 1.3 + 0.6 + 1.3 + 1.2 + 0.6 + 1.2 + 0.6 + 1.3 + 1.1 + 1.3

Max Score = **13.8**
Simple Test for a Match to the DNA sequence profile

Score of Test Sequence (CCTATTTAGGATA): 11.9

Maximum possible score (CCAATTTAGGAAA): 13.8

• Example threshold: if the score of the test sequence is >60% of the Maximum Score, we will designate it a match

Score Threshold for Match = 60% x Max Score = 0.6 x 13.8 = 8.28

For Match:
Score of test sequence > Score threshold
11.9 > 8.28

Hence, test sequence (CCTATTTAGGATA) matches the DNA sequence profile

Test sequence is a potential binding site of Transcription Factor