Title: Virus Diseases of the Grapevine Speaker: Naidu A. Rayapati















**ENERGY** 



AGRICULTURE

YOUTH & FAMILIES

HEALTH

ECONOMY EN

Virus Diseases

of the Grapevine

ENVIRONMENT

COMMUNITIES

## Lecture 1

#### Naidu A. Rayapati

Department of Plant Pathology WSU - Irrigated Agriculture Research & Extension Center Prosser, WA 509-786-9215 naidu@wsu.edu



## **Topics to be covered**

- Brief overview of viruses
- Grapevine virus diseases
- Conditions which mimic virus disease symptoms
- Management of grapevine virus diseases

# History's most deadly eventsEventDeaths (millions)

#### HIV/AIDS Pandemic

Influenza/Flu Pandemic (1918-1919) Black Death/Plague (1348-1350) World War II (1937-1945) World War I (1914-1918) : 20 (dead) + 40 (living with HIV) : 20-40

: 20-25

: 15.9

9.2

#### Humans are in a constant battle with viruses



Severe Acquired Respiratory Syndrome (SARS) epidemic

#### Humans are in a constant battle with viruses



**HIV/AIDS** pandemic

## Mass cull of sheep due to Foot-and-Mouth Virus crisis



### Viruses cause damage to agriculture



#### Some examples of crop losses due to viruses

| Crop       | Virus                      | Countries       | Loss/Year                    |
|------------|----------------------------|-----------------|------------------------------|
| Rice       | Tungro                     | SE Asia         | \$1.5x10 <sup>9</sup>        |
| Rice       | Ragged stunt               | SE Asia         | <b>\$1.4x10<sup>8</sup></b>  |
|            | Hoja blanca                | S. & C. America | <b>\$9.0x10</b> <sup>6</sup> |
| Barley     | <b>Barley yellow dwarf</b> | UK              | £6x10 <sup>6</sup>           |
| Wheat      | <b>Barley yellow dwarf</b> | UK              | £5x10 <sup>6</sup>           |
| Potato     | Potato leafroll            | UK              | £3-5x10 <sup>7</sup>         |
|            | Potato virus Y             |                 |                              |
|            | Potato virus X             |                 |                              |
| Sugarbeet  | <b>Beet yellows</b>        | UK              | £5-50x10 <sup>6</sup>        |
| U          | Beet mild yellows          |                 |                              |
| Citrus     | Citrus tristeza            | Worldwide       | £9-24x10 <sup>6</sup>        |
| Cassava    | Africa cassava mosaic      | Africa          | \$2x10 <sup>9</sup>          |
| Many crops | Tomato spotted wilt        | Worldwide       | \$1x10 <sup>9</sup>          |
| Cocoa      | Cocoa swollen shoot        | Ghana           | 1.9x10 <sup>8</sup> trees*   |

\*Number of trees eradicated over about 40 years

#### Viruses are very much a part of life on earth



#### Viruses are different

#### Virus

#### **Bacterium**



Electron microscope pictures

#### Viruses are sub-microscopic infective agents



#### The size of viruses relative to different pathogens



#### Size of leafroll virus:

Length: 1/500<sup>th</sup> of a millimeter Diameter: 1/90,000<sup>th</sup> of a millimeter

#### Size of fanleaf virus:

Diameter: 1/40,000<sup>th</sup> of a millimeter

#### Viruses have different shapes and sizes



#### **Viruses have simple genomes**

#### **Rod shaped viruses**



#### **Spherical viruses**



Viral genome (RNA or DNA)

Coat protein



**RNA: Ribonucleic acid DNA: Deoxyribonucleic acid** 

## Viruses: How do they spread ?



# The effectiveness of the different means of virus spread

| Method                 | Local | Distant |
|------------------------|-------|---------|
| Contoot                |       |         |
| Contact                | +     | -       |
| Seed transmission      | +     | +       |
| Pollen transmission    | +     | +       |
| Active vectors         | +     | +       |
| Less active vectors    | +     | -       |
| Vegetative propagation | +     | +       |
| Soil-borne             | +     | -       |

## Can we control viruses ?

- No direct method to control viruses (e.g. fungicidal chemicals to control fungal diseases, antibiotics to control bacterial infections)
- Control methods for viruses are indirect to: avoid infection prevent infection limit spread by insect vectors
- Prevention is better than cure

#### Holistic approach to prevent losses due to viruses

- Understand the nature of virus characterization strains/variants diagnostic tools
- Find the mode of transmission
  - insect vector
  - seed
  - vegetative cuttings
- Learn ecology and epidemiology spread of virus in time and space cultural practices vector behavior
- Deploy resistant/immune varieties through breeding